Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors.

نویسندگان

  • Haowei Shen
  • Khaled Moussawi
  • Wenhua Zhou
  • Shigenobu Toda
  • Peter W Kalivas
چکیده

Persistent relapse to addictive drugs constitutes the most challenging problem in addiction therapy, and is linked to impaired prefrontal cortex regulation of motivated behaviors involving the nucleus accumbens. Using a rat model of heroin addiction, we show that relapse requires long-term potentiation (LTP)-like increases in synaptic strength in the prefrontal cortex projection to the nucleus accumbens. The increased synaptic strength was paralleled by dendritic spine enlargement in accumbens spiny neurons and required up-regulated surface expression of NMDA2b-containing receptors (NR2B). Accordingly, blocking NR2B before reinstating heroin-seeking prevented the induction of LTP-like changes in spine remodeling and synaptic strength, and inhibited heroin relapse. These data show that LTP-like neuroplasticity in prefrontal-accumbens synapses is initiated by NR2B stimulation and strongly contributes to heroin relapse. Moreover, the data reveal NR2B-containing NMDA receptors as a previously unexplored therapeutic target for treating heroin addiction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms

Retinoic acid (RA)-dependent homeostatic plasticity and NMDA receptor-dependent long-term potentiation (LTP), a form of Hebbian plasticity, both enhance synaptic strength by increasing the abundance of postsynaptic AMPA receptors (AMPARs). However, it is unclear whether the molecular mechanisms mediating AMPAR trafficking during homeostatic and Hebbian plasticity differ, and it is unknown how R...

متن کامل

Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression.

It is widely believed that long-term depression (LTD) and its counterpart, long-term potentiation (LTP), involve mechanisms that are crucial for learning and memory. However, LTD is difficult to induce in adult cortex for reasons that are not known. Here we show that LTD can be readily induced in adult cortex by the activation of NMDA receptors (NMDARs), after inhibition of glutamate uptake. In...

متن کامل

P18: Signaling Pathway in Long-Term Potentiation

Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...

متن کامل

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 48  شماره 

صفحات  -

تاریخ انتشار 2011